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A b s t r a c t  

Mean v e l o c i t y  and t u r b u l e n c e  measurements were 
conducted  on t h e  th ree -d imens iona l  f o u n t a i n  f low-  
f i e l d  g e n e r a t e d  by t h e  impingement of two axisym- 
m e t r i c  j e t s  on a ground p l a n e  wi th  a p p l i c a t i o n  t o  
v e r t i c a l - t a k e - o f f  and l a n d i n g  ( V T O L )  a i r c r a f t .  The 
b a s i c  i n s t a n t a n e o u s  v e l o c i t y  d a t a  were  o b t a i n e d  
u s i n g  a two-component l a s e r  Doppler v e l o c i m e t e r  i n  
a p l ane  c o n n e c t i n g  t h e  n o z z l e  c e n t e r l i n e s  a t  d i f -  
f e r e n t  h e i g h t s  above t h e  ground emphas iz ing  t h e  j e t  
impingement r e g i o n  and t h e  f o u n t a i n  upwash r e g i o n  
formed by t h e  c o l l i s i o n  o f  t h e  w a l l  j e t s .  The 
d i s t r i b u t i o n s  of mean v e l o c i t y  components and 
t u r b u l e n c e  q u a n t i t i e s ,  i n c l u d i n g  t h e  t u r b u l e n c e  
i n t e n s i t y  and t h e  Reynolds s h e a r  s t r e s s ,  were 
d e r i v e d  from t h e  b a s i c  v e l o c i t y  d a t a .  D e t a i l e d  
s t u d i e s  o f  t h e  c h a r a c t e r i s t i c s  of t h e  f o u n t a i n  
r e v e a l e d  s e l f - s i m i l a r i t y  i n  t h e  mean v e l o c i t y  and 
t u r b u l e n c e  p r o f i l e s  a c r o s s  t h e  f o u n t a i n .  The 
s p r e a d  and  mean v e l o c i t y  decay c h a r a c t e r i s t i c s  of 
t h e  f o u n t a i n  were e s t a b i i s h e d :  
s i t i e s  of t h e  o r d e r  of 50% were 
f o u n t a i n .  
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Nomenclature 

E x i t  i n t e r n a l  d i ame te r  
t h e  e x i t  i e t  d i ame te r  

T u r b u l e n c e  i n t e n -  
obse rved  i n  t h e  

of t h e  n o z z l e  or 

Height  of t h e  n o z z l e  e x i t  above t h e  ground 
p l a t e  
Reynolds number based on t h e  e x i t  j e t  
d i ame te r  and t h e  e x i t  j e t  v e l o c i t y  
Center  d i s t a n c e  between t h e  j e t s  
Mean v e l o c i t y  i n  t h e  s t r eamwise  d i r e c t i o n  
Mean v e l o c i t y  i n  t h e  c ros s - s t r eam 
d i r e c t  i on  
F l u c t u a t i n g  component of t h e  mean v e l o c i t y  
i n  t h e  s t r e a n w i s e  d i r e c t i o n  
F l u c t u a t i n g  component of t h e  mean v e l o c i t y  
i n  t h e  c ros s - s t r eam d i r e c t i o n  
J e t  c e n t e r l i n e  v e l o c i t y  a t  t h e  e x i t  
T h e  l o c a l  maximum s t r eamwise  v e l o c i t y  i n  
t h e  f o u n t a i n  

The f o u n t a i n  h a l f  wid th  wher,e U = Umax D i s t ance  p a r a l l e l  t o  t h e  l i n e  connec t ing  
t h e  n o z z l e  c e n t e r l i n e s  
Di s t ance  p e r p e n d i c u l a r  t o  t h e  Line  con- 
n e c t i n g  t h e  n o z z l e  c e n t e r l i n e s  and p a r a l -  
l e l  t o  t h e  ground p l a n e  
P e r p e n d i c u l a r  d i s t a n c e  from t h e  ground 
p l a n e  

1 

I n t r o d u c t i o n  

The impinging l i f t  j e t s  of a v e r t i c a l  t a k e - o f f  
and l a n d i n g  (VTOL) a i r c r a f t  hove r ing  i n  ground 
p rox imi ty  produce compl i ca t ed  th ree -d i t .  , n s i o n a l  
f lowf i e l d s .  These 3 - D  f l o x f ' i e l d s  shown schemat i -  
c a l l y  i n  F ig .  1 f o r  t h e  c a s e  o f  t v o - j s c s ,  i n v o l v e  
s t r o n g  i n t e r a c t i o n s  between t h e  impiiiging l i f t - j e t  
s t r e a m s ,  t h e  a i r f r a m e  s u r f a c e  and t h e  ground.  An 
impor t an t  f e a t u r e  of t h i s  f l o w f i e l d  is t h e  f o u n t a i n  
upwash flow g e n e r a t e d  by t h e  c o l l i d i n g  w a l l  je ts .  
The f o u n t a i n  is  fan-shaped  ( F i g .  1 ) .  s p r e a d i n g  
r a d i a l l y  i n  a l l  d i r e c t i o n s  wi th  i n c r e a s i n g  wid th  
away from t h e  ground. The impingement of t h e  
f o u n t a i n  on t h e  a i r c r a f t  i n c r e a s e s  l i f t ,  e l e v a t e s  
s k i n  t e m p e r a t u r e s  and c a u s e s  p o s s i b l e  r e i n g e s t i o n  
i n t o  t h e  in le t s .  D e t a i l e d  s t u d i e s  of t h e  s t r u c t u r e  
and development o f  t h e  f o u n t a i n  upwash f low a r e  
t h u s  e s s e n t i a l  f o r  t h e  s u c c e s s f u l  d e s i g n  of e f f i -  
c i e n t  VTOL a i r c r a f t .  Toward t h i s  o b j e c t i v e ,  a 
un ique  set of v e l o c i t y  and t u r b u l e n c e  d a t a  on an  
ax isymmetr ic  t w i n - j e t  f o u n t a i n  flow a r e  p r e s e n t e d .  

Background 

References  1 - 4  r e p o r t  some of t h e  e a r l i e r  
measurements of f o u n t a i n  upwash f low p r o p e r t i e s .  
Reference  1 r e p o r t s  mean v e l o c i t y  measurements  i n  

1 .  Lift jet flow 
2. Jet impingement region 
3 .  Wall jet flow 
4. Fountain formation region 
5 .  Fountain up-wash flow 
6 .  Wall jet interaction stagnation line 
7 .  Entrainment 
8.  Ground plane 
9. Blocking surface GPII-,I%) 

F i g .  1 S c h e m a t i c  i l l u s t r a t i o n  of t w i n - j e t  
impingement flow. 
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t h e  wall je t  and  t h e  f o u n t a i n  f o r  t w i n  ax i symmet r i c  
j e t  impingement u s i n g  ho t -wi re  t e c h n i q u e s  f o r  S / D  = 
12 and H/D - 5. The f o u n t a i n  f o r m a t i o n  and  deve l -  
opment c h a r a c t e r i s t i c s  were o b t a i n e d  f o r  a r a n g e  o f  
t h e  impor t an t  pa rame te r s  t h a t  i n f l u e n c e  t h e  f l o w .  
The f low a n g u l a r i t y  i n  t h e  f o u n t a i n  i n  t h e  p l a n e  
c o n n e c t i n g  t h e  n o z z l e  c e n t e r 1  i n e s  was r e p o r t e d  t o  
vary  randomly .  Reference  2 p r e s e n t s  p i t o t  p r e s s u r e  
p r o f i l e s  i n  t h e  f o u n t a i n  f o r  twin-axisymmetr ic  j e t  
impingement w i t h  S/D - 6 and 2 5 HID 
f l u c t u a t i o n s  were r e p o r t e d  in t h e  upwash f low 
p r o p e r t i e s ,  and  t h e  mami  tude  o f  these f l u c t u a t i o n s  
i n c r e a s e d  wi th  j e t  h e i g h t  above  t h e  ground. Also ,  
h i g h l y  f l u c t u a t i n g  flow a n g u l a r i t y ,  w i t h  f r e q u e n t  
comple t e  v e l o c i t y  r e v e r s a l s ,  was r e p o r t e d  i n  t h e  
r e g i o n s  o u t s i d e  o f  t h e  main upwash f a n  and  t h e  
shear l a y e r s  of t h e  i n c i d e n t  j e t s ,  and  somet imes  
even  i n  t h e  c e n t r a l  upwash r e g i o n .  T h e r e f o r e ,  i t  
was reccmmended t h a t  p i t o t  p r o b e s  be used  in t h e  
measurement of mean f l o w  p r o p e r t i e s  i n  t h e  f o u n t a i n  
upwash. 

5. S t r o n g  

Refe rence  3 r e p o r t e d  measurements i n  a two- 
d imens iona l  f o u n t a i n  upwash, i n d i c a t i n g  h i g h  tur-  
b u l e n c e  l e v e l s  and  s p r e a d i n g  rates i n  t h e  f o u n t a i n .  
The f irst  s e t  of c a r e f u l  measurements conduc ted  i n  
a two-dimens iona l  f o u n t a i n  upwash u s i n g  x - y i r e  h o t  
f i l m  anemometer were p r e s e n t e d  by G i l b e r t ,  who 
reported d e t a i l e d  mean v e l o c i t y  and  t u r b u l e n c e  
measurements ,  i n c l u d i n g  decay  and  s p r e a d  cha rac -  
ter is t ics  of t h e  f o u n t a i n .  The  obse rved  l e v e l s  o f  
t u r b u l e n t  i n t e n s i t i e s  i n  t h e  f o u n t a i n  were  similar 
t o  t h o s e  i n  a n  o r d i n a r y  two-dimens iona l  f ree  j e t ;  
however. h i g h  growth r a t e s  were obse rved  i n  t h e  
f o u n t a i n .  The f o u n t a i n s  i n  Refe rences  3 and 4 were 
g e n e r a t e d  by two i s o l a t e d ,  two-dimens iona l  oppos ing  
wal l  je ts ,  t h u s  e l i m i n a t i n g  t h e  j e t  impingement 
r e g i o n  as p a r t  of t h e  f o u n t a i n  f o r m a t i o n  p r o c e s s .  

Reference  5 p r e s e n t s  mean v e l o c i t y  and  t u r -  
bu lence  measurements u s i n g  ho t -wi re  t e c h n i q u e s  i n  a 
f o u n t a i n  g e n e r a t e d  b y  t h e  impingement of two-axi- 
symmetr ic  j e t s ,  w i t h  no d e f i n i t e  c o n c l u s i o n s  o n  t h e  
f o u n t a i n  t u r b u l e n c e  s t r u c t u r e .  Re fe rences  6 and 7 
describe f o u n t a i n  behavior  f o r  c l o s e  n o z z l e  s p a c i n g  
and  a l s o  i n d i c a t e  t h e  e f f e c t  o f  t h e  b lockage  by t h e  
probe  s u p p o r t .  Measurements r e p o r t e d  i n  R e f s .  8-11 
do n o t  r e v e a l  a n y  a d d i t i o n a l  f e a t u r e s  o f  f o u n t a i n  
f l o w s .  

Al though s e v e r a l  i n v e s t i g a t i o n s  o f  t h e  f o u n t a i n  
f low have  been  c a r r i e d  o u t ,  i n t e r p r e t a t i o n s  o f  t h e  
measurements v a r y  w i d e l y ,  p r i m a r i l y  because  o f  t h e  
d i f f i c u l t y  i n  measuring h i g h l y  u n s t e a d y  f l o w s  u s i n g  
h o t - f i l m  and  p i t o t - p r o b e  t e c h n i q u e s .  Computa t iona l  
c o d e s  r e q u i r e  a b e t t e r  d e f i n i t i o n  o f  t h e  f o u n t a i n  
f low and  i ts  t u r b u l e n c e  s t r u c t u r e  t o  make r e l i a b l e  
p r e d i c t i o n s .  T h e r e f o r e ,  a need  e x i s t e d  f o r  a 
r e l i a b l e ,  d e t a i l e d  mean-veloci t y  and  t u r b u l e n c e  
data  base i n  a r ea l i s t i c  3-D f o u n t a i n  g e n e r a t e d  by 
t h e  imp ing ing  j e t s  u s i n g  a s u i t a b l e  measurement 
t e c h n i q u e .  

Measurement Technique and t h e  Working Medium 

The measurement t e c h n i q u e  f o r  s t u d y i n g  t h e  
f o u n t a i n  f low was r e q u i r e d  t o  meet t h e  f o l l o w i n g  
s p e c i f i c a t i o n s :  a )  be  n o n i n t r u s i v e  s o  t h a t  no f l o w  
d i s t u r b a n c e  i s  caused ,  e s p e c i a l l y  i n  t h e  c d s e  of  
c l o s e l y  spaced  j e t s ,  b )  be a b l e  t o  s e n s e  t h e  direc-  
t i o n  o f  f l o w  i n  t h e  r e c i r c u l a t i n g  r e g l o n s ,  c )  have  
a l i n e a r  r e s p o n s e ,  e s s e n t i a l  f o r  a c e m a t e  neasu re -  
ments  i n  areas where t h e  t u r b u l e n c e  i n t e n s i t i e s  a r e  

h i g h  s u c h  as t h e  f o u n t a i n .  A laser  Dopp)5y , je lo-  
cimeter (LDV) meets t h e s e  s p e c i f i c a t i o n s  ; i n  
a d d i t i o n ,  LDV r e sponds  t o  a s p e c i f i c  v e l o c i t y  
component i n  3-D f l o w s  and  measu res  v e l o c i t y  d i -  
r e c t l y  w i t h o u t  t h e  need  t o  c o r r e c t  f o r  t e m p e r a t u r e  
e f f e c t s .  

A s  a working  medium, water o f f e r s  s p e c i f i c  
a d v a n t a g e s  compared t o  a i r ;  t h e  t r a c e r s  s u i t a b l e  
f o r  f low v i s u a l i z a t i o n  i n  water a r e  more numerous 
w i t h  b e t t e r  l i g h t - r e f l e c t i n g  c h a r a c t e r i s t i c s ,  and  
aerodynamic  phenomena c a n  be o b s e r v e d  a t  a re la -  
t i v e l y  s low s p e e d  f o r  t h e  same Reynolds  number and  
model scale  because  of  t h e  d i f f e r e n c e  i n  k i n e m a t i c  
v i s c o s i t i e s  of a i r  and  w a t e r .  Moreover ,  f o r  laser 
Doppler v e l o c i m e t r y ,  t h e  s e e d i n g  o f  t h e  f low is  
norma l ly  unnecessa ry  i n  water because  t h e  n a t u r a l  
suspended  p a r t i c l e s  ac t  as l i g h t  sca t te re rs .  If 
s e e d i n g  i s  n e c e s s a r y ,  i t  c a n  be accompl i shed  e a s i l y  
in water t h a n  i n  a i r  by a d d i n g  n e u t r a l - d e n s i t y  
p l a s t i c  p a r t i c l e s  o f  t h e  p rope r  s i z e .  

Expe r imen ta l  Appara tus  

F i g u r e  2 shows t h e  je t - impingement  f a c i l i t y  
used  f o r  c o n d u c t i n g  l a se r -Dopp le r -ve loc ime te r  (LDV) 
measurements w i t h  water as t h e  working  medium. The 

I Main plexiglass tank 
2 Header tank 
3 Nozzle units 
4 Ground plate 
5 Turbine flow meter 
6 Motor-operated 

flow control valves 
7 Shut-off valves 
8 Settling chamber of 3 
9 Control pand 

10 Traversing mechanism 

F i g .  2 Je t  impingement f a c i l i t y .  
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primary components a r e  ( 1 )  the  main Plexiglas  tank,  
( 2 )  t h e  header tank,  ( 3 )  nozzle u n i t s ,  and (4) the 
ground p l a t e .  The l a r g e  t ransparent  main tank 
(1.88 x 1.52 x 1.37 m )  has  an approximate capaci ty  
of 3800 l i t e r s .  The pressurized s t a i n l e s s  steel 
c y l i n d r i c a l  header tank,  91.4-cm diam., s u p p l i e s  
water t o  t h e  nozzle u n i t s  and a c t s  a s  a plenum t o  
damp f l u c t u a t i o n s  produced by t h e  pump. 

The func t ion  of the P lex ig las  nozzle uni t s  
(Fig.  3) is  t o  reduce turbulence and mean-velocity 
nonuniformities i n  the  e x i s t i n g  je t - f low t o  accept- 
a b l e  l e v e l s .  Each nozzle u n i t  c o n s i s t s  of a flow 
d i s t r i b u t o r  ( d i f f u s e r )  f o r  dece lera t ing  the  flow, a 
honeycomb and screens t o  e s t a b l i s h  a uniform flow 
w i t h  low turbulence,  and a nozzle (2.54-em e x i t  
diam., 16:l cont rac t ion  r a t i o )  f o r  acce lera t ing  the 
flow. The ground p l a t e  is  held a t  a f ixed  height 
above the  bottom of t h e  main tank and a c t s  a s  an 
impingement sur face  f o r  the  j e t s  with s u f f i c i e n t  
edge clearance fo r  passage of t h e  flow. The posi- 
t i o n  of t h e  nozzle u n i t s  is  adjusted by a t ravers -  
ing u n i t  t h a t  can accommodate a s  many a s  four 
nozzle u n i t s  and mounted on the  main tank. 

The c i r c u l a t i o n  system draws off water from 
u n d e r  the  ground p l a t e  and pumps i t  i n t o  the header 
tank, t h u s  supplying water t o  t h e  j e t s  through a 
s e r i e s  of flow-control devices. With the avai lable  
pumping capac i ty ,  j e t  Reynolds numbers  up t o  
200 000 can be obtained i n  a t y p i c a l  twin-jet 
(2.54-zm-exit diam.) impingement configurat ion.  
T h e  three-dimensional fountain flow i s  visual ized 
through a s e r i e s  of two-dimensional images. Fluor- 
escein-sodium, a f luorescent  dye, i s  in jec ted  i n t o  
the  j e t  flow, which f luoresces  br ight  yellowish- 
green when the des i red  cross-sect ion i s  illuminated 
w i t h  a t h i n  ( 1  m m )  sheet  of 488 nm wavelength l i g h t  
from an Argon-ion l a s e r .  

A two color  (two-component) TSI l a s e r  Doppler 
velocimeter system (Fig .  4 )  i s  used i n  the  dual- 
beam of f -ax is  backward s c a t t e r i n g  mode v i  t h  Bragg- 
c e l l  frequency s h i f t i n g .  The probe volume i s  
posi t ioned a t  t h e  required loca t ion  using a remote- 
l y  dr iven X-Y-Z t r a v e r s i n g  u n i t .  The TSI counter- 

Fig. 3 Laser Doppler velocimeter. 

type Signal  processors were used t o  convert t h e  
Doppler s i g n a l  i n t o  a form s u i t a b l e  f o r  recording 
on a magnetic d i s k  through a dedicated DEC MINC 
11/23 Computer. S ix  groups of 256 samples each 
were taken a t  each d a t a  point .  The recorded da ta  
on the d i s k  were then processed on a DEC PDP 11/70 
minicomputer and p lo t ted  on  a Benson-Varian elec-  
t r o s t a t i c  p l o t t e r .  The a v a i l a b l e  c i t y  water d i d  
not have enough s c a t t e r i n g  p a r t i c l e s  t o  give good 
s i g n a l  to-noise r a t i o s  i n  the  backward s c a t t e r i n g  
mode; seeding the  t e s t  medium w i t h  15.6 um Dow 
Corning polystyrene p a r t i c l e s  r e s u l t e d  i n  s i g n a l s  
of exce l len t  qua l i ty .  A TSI hot-film anemometer 
system w i t h  a TSI 1231 W conica l  hot-film probe was 
a l s o  used for  d iagnos t ic  measurements of the  j e t  
flow a t  t h e  nozzle e x i t s .  A d e t a i l e d  descr ip t ion  
of the experimental apparatus  and t h e  flow visua- 
l i z a t i o n  and measurement techniques i s  given i n  
Refs. 14-17. 

Test Condl tions 

Extensive d iagnos t ic  flow v i s u a l i z a t i o n  s t u d i e s  
were conducted f o r  equal s t rength  j e t s  and f o r  
varying he ights  of t h e  nozzle e x i t  above the ground 
and separa t ion  d is tances  between t h e  nozzles. The 
objec t ive  was t o  s e l e c t  a twin-jet  impingement 
configurat ion which has a c e n t r a l l y  loca ted ,  s t rong  
i s o l a t e d  fountain r i s i n g  from the  ground p l a t e  
without in te r fe rence  from the  f r e e  j e t s .  Based on  
these flow v i s u a l i z a t i o n  s t u d i e s ,  a normally i m -  
pinging, equal-strength twin-jet  configurat ion w i t h  
S/D = 9.0 and H I D  = 3.0 was s e l e c t e d  f o r  d e t a i l e d  
L D V  measurements. Figure 5 shows t h e  corresponding 
f lowf ie ld  v isua l ized  i n  a plane connecting t h e  
nozzle c e n t e r l i n e s  using t h e  f luorescent  dye l laser  
l i g h t  shee t  technique. 

LDV measurements were taken f o r  equal-s t rength 
je ts  a t  twelve he ights  ( Z / D  = 0.05 t o  2.94) between 
t h e  nozzle e x i t s  and t h e  ground. The j e t  e x i t  
ve loc i ty  4U ) was 6.71 m / s ,  r e s u l t i n g  i n  a Re = 
1.70 x 10 .J A l l  measurements were taken i n  t h e  
plane of symmet ry  connecting t h e  nozzle center-  
l i n e s .  The time-dependent streamwise (U + u )  and 
cross-stream ( V  + v )  v e l o c i t i e s  i n  t h e  X and Z 
d i r e c t i o n s ,  respec t ive ly ,  were measured d i r e c t l y  by  
t h e  L D V .  

i n t e n s i t i e s  C u ' > / U ,  GI"), Reynolds shear  s t r e s s  

( -  uv/U ) ,  and c o r r e l a t i o n  c o e f f i c i e n t  (-GIG 

The m n n  v e l o c i t i e s  ( U ,  V )  turbulence 

- 
2 - 

el were derived from the bas ic  ve loc i ty  d a t a .  

Experimental Results 

The experimental da ta  a r e  c l a s s i f i e d  i n t o  three  
ca tegor ies ,  ( a )  j e t - e x i t  flow; e s t a b l i s h i n g  t h e  
qua l i ty  of the  flow e x i t i n g  the  nozzles ( b )  j e t  
impingement flow ( e )  fountain upwash flow. 

Jet-Exi t  F low Measurements were made in t h e  f ree-  
j e t  flow e x i t i n g  t h e  nozzles t o  e s t a b l i s h  unifor-  
m i t y  of the  mean ve loc i ty  p r o f i l e  and t h e  core 
turbulence l e v e l s .  Both t h e  conica l  hot-film probe 
and the LDV were used  t o  obta in  a c r o s s  check of 
t h e  da ta .  Further ,  the  hot-film measurements a l s o  
f a c i l i t a t e d  s p e c t r a l  a n a l y s i s  of the  ve loc i ty  
s i g n a l s  . 
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Fig. 5 Twin-jet impingement flow with fountain 
formation: 
Re - 1.70 x 10 . S / g  = 9.0, H/D - 3.0. 
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Figure 6 shows the mean-velocity and turbu-

lence-intensity pro£11es across the jet operating
at a Re - 1.70 x 10 _, taken 1.5 mm below the nozzle

exit. Here U_ is the Jet centerline velocity at

the exit. Th J Jet flow is uniform with a low level

of turbulence in the core region; the shear layers

are thin. The agreement between the LDV data and

hot-film data is good. Because of the large veloc-

ity gradients across the probe volume, which was

larger than the shear-layer thickness, the LDV gave

higher turbulence levels in the shear layers. The

frequency spectrum of the hot-film signal taken at

the center of the Jet showed no selective or speci-

fic peaks indicative of unwanted disturbances.

Jet Implnsement Flow The mean-velocity and tur-

bulence quantities in the jet were normalized with

Uj. Figure 7 shows the streamwise (U/Uj) and

c_oss-stream (V/U A) components of the m@an veloc-

ities across the Impinging jet at several 3tream-

wise locations, with special emphasis on the stag-

nation region. The streamwise (_u2/Uj) and cross-

stream (_v2/Uj) turbulence intensities are shown

in Figure 8. The Reynolds shear stress (- _-v/Uj 2)

profiles are shown in Figure 9.

The measurements, especially the V/Uj data near
the ground plate, show a persistent symmetry in the

flow about the centerline of the jet. The in-

fluence of the ground plate (Jet impingement

region, Fig. I) extends to a height of Z/D - 0.75,

where the jet still has a potential core in the

streamwise mean velocity profile and the cross-

stream component of the velocity is close to zero.

Below Z/D = 0.75, the Jet starts deflecting along

the ground with a rapid decrease in U and increase

in V. The dip in the U profiles at the center

seems typical of jet-impingement flows, as also

shown in the data of Donaldson and Snedeker (Ref.

18). Figure 8 shows that in the free jet, away

from the ground, V-Y- 2_ this trend reverses

as the Jet deflects near the ground. The Reynolds-

shear-stress profiles (Fig. 9) near the ground show

substantial regions of zero shear stress (Z/D -

0.2) despite the large velocity gradients, pos-

sibly because the turbulence exhibits a delayed

response to the ground plate, as also evidenced by

the profiles of _-_and _-_near the ground.

Limited measurements on the second Jet show similar

initial profiles and Jet development.

Fountain Upwash Flow Figure 10 illustrates the

variations of the mean velocities (U and V) across

the fountain. The distributions of V near the

ground reveal that the fountain-formation region

(Fig. I) extends to Z/D - 0.5, where the variation

in V across the fountain is comparable to that at

stations farther downstream. However, it should be

observed that even at Z/D - 0.2 and 0.3, the shape

of the U profile resembles that typical for other

downstream stations. The turbulence intensities

_'_and _ are of the same order of magnitude at a

given station above the fountain-formation region

Z/D > 0.5. In the fountain-formation region Z/D <

0.5, _ u2 was observed to be relatively small

because of the stagnating flow. The symmetry in

the data distributions about the centerline of the

fountain reflects the quality of the present meas-

urements. The symmetry in the fountain data was a

major problem in the majority of the earlier inves-

tigations.

Similarity of the Fountain Measurements Observa-

tion of the mean velocity (Fig. 10) and turbulence

profiles in the fountain suggested self-similarity.
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Fig. 6 Mean velocity (U/Oma x) and turbulence-

intensity (_u2/Uj) profiles at the Jet
exit.
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Fig. 7 Variation of (a) streamwise and

(b) cross-stream mean velocities across

the impinging Jet.
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across the impinging Jet.
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Variation of the Reynolds shear stress

across the impinging Jet.

The fountain profiles were normalized with U

and XI/2 where Uma x is the local maximum vel_ty

and X..^, the haTF-width, is the distance from the
IrE

center of the fountain to the point where the

velocity is U /2. U and X.__ were obtained by
m a i/_

curve-fitting _e fountain mean velocity (U) pro-

file with a least square curve of the form shown in

Equation (I):

U = A + B exp [-(X - X )2/2 S 2] , (I)
o

as suggested by Gilbert (Ref. 4). This curve fit

gives the symmetry coordinate X , the maximum

velocity (A + B) and the parameter S related to the

fountain half width XI/2 by Equation (2).

XI/2 = 2 LOG _ S

(2)
1.177 S (for B>>A)

also

U/Uma x = exp - 0.693 (X/Xl/2)2(for B>>A).

The value of the X for Z/D _ 0.5 was found to be

very small establl_hing once again, the inherent

symmetrlcity in the present data. Figure 11 shows

the linear growth of the fountain half-width (Xl/2)

obtained by curve-fitting. The growth rate of

about 0.16 is lower than that observed in Ref. (4)

for two-dimensional fountain upwash. Figure 12

shows the decay of the maximum velocity (U ) in
• .max

the fountain again obtained by curve flttlng.

Figure 13 shows the streamwise fountain veloc-

ity (U) profiles s_ifted to their symmetry point

and normalized with respect to U and XII_,
obtained by curve fitting. A st_ing simi_arlty

can be observed in the velocity profiles. Similar

observations were made for two-dimensional fountain

in Ref. (_). The profiles below Z/D = 0.5 were

excluded because they fall into the fountain-forma-

tion region, although the profiles at Z/D = 0.3 and

0.2 do not differ much from the similarity form

shown in Fig. 13. The profiles reach a similar

form within a short distance (Z/D = 0.5) above the

fountaln-formation region, possibly because of

greatly enhanced mixing at the base of the

fountain.

The variation or the cross stream velocity V

(Fig. 14) through the fountain was also found to be

self-similar. These cross-stream mean velocity

show an expected smooth variation from +ve on one

side of the fountain to -ve on the other with zero

crossing at the center of the fountain. The values

of V at Z/D = 0.5 are slightly higher compared to

the other downstream stations because of proximlty

to the fountain formation region.

Figures 15-18 show the various turbulence

quantities across the fountain nondimensionalized

with the similarity variables U___ and X,,_ ob-

talned by curve fitting. Once again slmllarlty can

be observed in the turbulence profiles at various

downstream stations. The profiles of _ u2 and _ v 2

(Figs. 15 and 16) show that they are generally of

the same magnitude and shape. The maximum tur-

bulence intensities are around 0.5, based on the
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local maximum velocity (U _), suggesting the
a

possibility for even instantaneous flow reversal;

therefore the LDV is a more reliable instrument

than the hot-film anemometer for measuring fountain

flows. The similarity revealed by the Reynolds

shear stress (- uv) data (Fig. 17) is significant

and indicative of the accuracy and precision of the

experiment because the shear stress data in general

are particularly sensitive to the measurement

technique.

Figure 18 shows the similarity exhibited by the

correlation function -FIG _--_. The scatter in

the region beyond X = XI/2 is primarily caused by
the uncertainty in the measurement of small values

of the respective turbulence quantities. The

absolute maximum value of the correlation function

is observed to be approximately 0.5.

In general, the turbulence profiles in the

fountain were observed to take a longer distance to

attain their self-similar shape than the corre-

sponding mean velocity profiles.

Conclusions and Suggested Future Research

Mean velocity and turbulence profiles were

obtained at 12 stations across the fountain upwash

generated by the impingement of two axisymmetric

jets using the laser Doppler velocimeter (LDV).

Data were also reported on the impinging jet. The

turbulence quantities included turbulence inten-

sities, Reynolds shear stresses and correlation

functions. The distributions of mean velocity and

turbulence quantities across the fountain show

self-similarity when nondimensionalized with proper

parameters. The fountain flow was observed to be

highly turbulent (- 50% turbulence intensity)

requiring the use of an LDV. The growth of the

fountain was observed to be linear at a growth rate

of 0.16. The turbulence and the near ground mean

velocity measurements in the three-dimensional

fountain are believed to be the first data reported

on such flows.

Additional measurements on the fountain flow

away from the symmetry plane connecting the nozzle

centerlines using a three component LDV are sug-

gested to fully establish the fountain behavior.

The effect of varying the nozzle separation and the

height above the ground on the fountain behavior

need to be established.

RefePences

1. D. R. Kotansky and L. W. Glaze, The Effects of

Ground Wall-Jet Characteristics on Fountain

Upwash Flow Formation and Development, Report

ONR-CR212-216-1F, 15 June 1980.

2. R.C. Jenkins and W. G. Hill, Jr., Investi-

gation of VTOL Upwash Flows Formed by Two

Impinging Jets, Grumman Research Department

Report RE-548, November 1977.

3. R. J. Kind and K. Suthanthiran, The Interac-

tion of Two Opposing Plane Turbulent Wall

Jets, AIAA Paper 72-211, AIAA 10th Aerospace

Sciences Meeting, San Diego, CA, Jan. 1972.

4. B. L. Gilbert, An Investigation of Turbulence

Mechanisms in V/STOL Upwash Flow Fields,

Grumman Aerospace Rept. Re-688, 1984.

5. W. H. Foley and D. B. Finley, Fountain Jet

Turbulence, A IAA Paper No. 81-1293, AIAA Fluid

and Plasma Dynamics Conf. Palo Alto, CA, June

1981.

6. M. J. Siclari, W. G. Hill, Jr., R. C. Jenkins,

and D. Migdal, VTOL In-Ground Effect Flows for

Closely Spaced Jets, AIAA Paper No. 80-1880,

August 1980.

7. D. Migdal, W. G. Hill, Jr., R. C. Jenkins, and

M. J. Siclari, VTOL In-Ground Effect Flows for

Closely Spaced Jets, NASA CR-152321, December

1979.

8. G. R. Hall and K. H. Rogers, Recirculation

Effects Produced by a Pair of Heated Jets

Impinging on a Ground Plane, NASA CR 1307, May

1978.

9. A. Karemaa, C. W. Smith, H. A. Weber, and J.

E. Garner, The Aerodynamic and Thermodynamic

Characteristics of Fountains and Some Far-

Field Temperature Distributions, Report ONR-CR

212-237-IF, July 1978.

10. J. R. Lummus, The Criticality of Engine Ex-

haust Simulations on VSTOL Model - Measured

Ground Effects, Report ONR-CRRI2-255-1F,

August 1979.

11. M. J. Siclari, W. G. Hill, Jr., and R. C.

Jenkins, Investigation of Stagnation Line and

Upwash Formation, AIAA Paper No. 77-615,

AIAA/NASA, Ames V/STOL ConferenCe, June 1977.

12. F. Durst, A. Melling, and J. H. Whitelaw,

Principles and Practice of Laser-Doppler

Anemometry, (Academic Press, NY, 1976).

13. T. S. Durrani and C. A. Greated, Laser Systems

in Flow Measurement, (Plenum Press, NY, 1977).

14. K. R. Saripalli and J. C. Kroutil, A Novel

Experimental Facility for Conducting Jet-

Impingement Studies Related to VTOL Aircraft,

AIAA Paper 85-0052, 1985.

15. K. R. Saripalli, Visualization of Multi-Jet

Impingement Flow, AIAA Paper 81-1364, July

1981.

16. K. R. Saripalli, Visualization Studies of Jet

Impingement Flows at McDonnell Douglas

Research Laboratories, Third Intl. Symp. on

Flow Visualizatlon, Ann Arbor, Sept. 1983.

17. K. R. Saripalli, Visualization of Multi-Jet

Impingement Flow, AIAA J. 21, 483 (1983).

18. C. Donaldson and R. S. Snedeker, A Study of

Free Jet Impingement. Part I. Mean Properties

of Free and Impinging Jets, J. Fluid Mech. qL,

281 (1971).

159


